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An interfacial liquid crystal model is formulated and used to derive a membrane shape equation that takes
into account pressure, tension, bending, torsion, and flexoelectric forces. Flexoelectricity introduces electric
field-induced curvature and is of relevance to the study and characterization of biological membranes. It is
shown that flexoelectricity renormalizes the membrane mechanical tension, shear, and bending effects, and
hence it offers diverse pathways to manipulate the membrane’s shape. The derived electroelastic shape equa-
tion provides systematic guidance on how to use electric fields in membrane studies.
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I. INTRODUCTION

Piezoelectric solids are materials that exhibit electroelas-
tic couplings, such that under an imposed electric field the
generated stress varies linearly with the imposed field �1,2�.
This effect is the basis of a wide range of application of
piezoelectric solids in generators, filters, and sensors. Liquid
crystals are materials that also exhibit electroelastic cou-
plings, but in this case it is the torque that varies linearly
with an imposed electric field �3�. This so-called flexoelectric
effect is the basis for a range of phenomena and applications
of flexoelectric liquid crystals. A key difference between
these two effects is that while in piezoelectrics the imposed
electric field produces positional strain, in liquid crystals it
produces orientational strains. The effect of the electric field
on strain/orientation is known as the converse effect, while
the production of an electric field by a positional/
orientational strain is known as the direct effect �4�. This
paper is restricted to the converse flexoelectric effect ob-
served when subjecting a flexoelectric material to an external
electric field �4�.

Electroelastic couplings in solids and liquid crystals can
be manifested in the bulk and on interfaces. Piezoelectric
shells and membranes of elastic solids have been widely
studied for their use as wave-propagation media �2�. Like-
wise, flexoelectricity in fluid membranes have been widely
studied for its relevance in biological function. Petrov and
co-workers have developed the basic nature, use, and appli-
cations of membrane flexoelectricity and demonstrated its
relevance to biological function �4–6�. This paper seeks to
contribute to the further development of membrane flexo-
electric physics by formulating generalized covariant models
that lack restrictions from specific geometries and can even-
tually take into account dissipative dynamics.

Piezoelectricity in solids and flexoelectricity in liquid
crystals arise due to the absence of a center of symmetry, and
the phenomenological coefficient linking the external field
vector to the symmetric distortion tensor is a tensor of third
rank �2�. For transversely isotropic surfaces, whose distin-
guishing direction is surface unit normal k, the only possible

material property third-rank tensor, which is linear in k and
symmetric in the last two indices, is c=cT=ckIs �2�. Al-
though both piezoelectricity and flexoelectricity involve a
third-rank tensor, flexoelectricity leads to richer phenomena,
as shown in what follows, by considering the generated sur-
face stresses t and their corresponding capillary pressures p
�i.e., normal forces to the interface�. In transversely isotropic
interfaces, the piezoelectric contribution to the electrome-

chanical Helmholtz free energy per unit area �Âpiezo under an
external electric field E �E=E�a�+Enk� is �2�,

�Âpiezo = − cp
n��d��En = − cpa��d��En = −

Ppiezo · E

�
, �1�

where the symbol ˆ denotes per unit mass, cp is the piezo-
electric electroelastic coefficient, d�� is the symmetric tan-
gential deformation tensor, a�� is the reciprocal surface met-
ric tensor, Ppiezo=cp(Is :d) k is the piezoelectric vector, and �
is the surface density. An external field E acting on a piezo-
electric surface generates a surface stress tpiezo given by �2�,

tpiezo =
��Âpiezo

�d
= − cp�k · E�Is, �2�

and an E-dependent capillary pressure ppiezo,

ppiezo = − �� · tpiezo� · k = 2cp�k · E�H , �3�

where H=Is :b /2 is the average curvature, and b=−�s ·k is
the symmetric curvature tensor; �s(·)=Is ·�(·) is the surface
gradient operator, and Is=I−kk is the surface unit tensor.
Equations �2� and �3� show that piezoelectricity generates
tangential stresses and capillary pressures proportional to the
curvature, or in other words, it just renormalizes the interfa-
cial tension effects,

t = �Is → tpiezo = �� − cp�k · E��Is, �4a�

pc = 2�H → pcpiezo = �2� + 2cp�k · E��H , �4b�

where � is the interfacial tension. In fluid membranes, an
imposed external electric field E couples with bending
distortions �4–6�,*E-mail address: alejandro.rey@mcgill.ca
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�Âflexo = − cflexo
n�� b��En = − cflexoa

��b��En

= − cflexo2H�k · E� = − Pflexo · E , �5�

where �Âflexo is the Helmholtz free energy per unit area due
to flexoelectricity, cflexo

n�� =cflexoa
�� is the third-order flexo-

electric tensor, cflexo is the flexoelectric coefficient, and
Pflexo=cflexo�Is :b� k is the flexoelectric polarization vector.
Typical values of cflexo for dipolar lipid membranes are
10−20 C �4�; the convention for the sign of cflexo used here is
that when H�0, a cflexo�0 means that Pflexo is along E.
Since both unit normal �k� and average curvature �H� enter

in the interfacial flexoelectric effect (Âflexo=Âflexo�k ,H�), we
now have to consider both stress and bending moment con-
tributions. The symmetric flexoelectric bending moment ten-
sor Mflexo, analogous to the piezoelectric stress �Eq. �2��, is

Mflexo =
��Âflexo

�b
= − cflexo�k · E�Is. �6�

As shown below, the flexoelectric membrane stress contribu-
tions will contain extension, shear, and bending stresses,

tflexo = �ÂflexoIs − Mflexo · b −
�Aflexo

�k
k , �7�

where �(A) /�k denotes the variational derivative of

the Helmholtz free energy A, and A=��Â dS. Comparing
tflexo �Eq. �7�� with tpiezo �Eq. �2��, it is seen that interfacial
flexoelectricity leads to a wider range of phenomena.
The corresponding flexoelectric capillary pressure
pflexo=−��s�tflexo� ·k due to its dependence on the nondiago-
nal 2�3 stress tensor tflexo will now be a nonlinear function
of curvature and its gradients.

pflexo = − ��s��ÂflexoIs − Mflexo · b −
�Aflexo

�k
k�	 · k . �8�

Since the capillary pressure is the decisive factor in shape
selection �7,8�, we conclude from these simple observations
that flexoelectricity in transversely anisotropic fluid mem-
branes has the ability to change the surface geometry under
the action of external electric fields through extension, shear,
and bending stresses, and offer a nontrivial window of op-
portunity to membrane characterization and functionaliza-
tion. For experimental measurements and quantitative studies
of membrane flexoelectricity, the reader is referred to Petrov
�4�. The main motivation of this paper is to develop a cova-
riant membrane shape model that includes the flexoelectric
pressure given in Eq. �8�. Most of the existing works in
membrane flexoelectricity are devoted to specific geometries
and no coordinate-free approach based on the liquid crystal
model seems to be available.

This paper presents an electroelastic model based on the
liquid crystal membrane model �9–11�. Liquid crystals of the
nematic type are sometimes referred to as transversely iso-
tropic materials, since the average molecular orientation of
the rodlike molecules singles out the unique direction of the
phase. In liquid crystal membranology, the transversely iso-
tropic nature of the membrane is incorporated through the

outward unit normal k. In bulk liquid crystal statics �3�, the
equations of equilibrium are described using the molecular
field h, which is the negative of variational derivative of the
elastic free-energy density: h=−�Abulk /�n. In fluid mem-
branes, the equations of equilibrium are derived using the
interfacial molecular field which is now the negative of the
variational derivative of the free energy with respect to the
unit normal hsurface=−�Asurface /�k. Previous work using this
approach was applied to the surfactant-laden liquid-liquid
crystal interface, and shown to lead to equations fully com-
patible with shape equations of membranes and vesicles.

The objective of this paper are �i� to derive a covariant
membrane shape equation that includes the flexoelectric ef-
fect, using the liquid crystal membranology approach, and
�ii� to identify the main mechanisms of electric field driven-
shape changes in flexoelectric membranes.

In this initial effort, we assume that the electric field E is
a known constant and that the membrane order parameter is
the outward unit normal k; for a discussion on how to asses
E, see Ref. �4�. Other models using tensorial order param-
eters that take into account ordoelectric effects can be for-
mulated using a similar approach. The approach used in this
paper extends previous models of liquid crystal surface me-
chanics �12–25�, and builds on previous works on membrane
mechanics �26–30� and flexoelectric membranes �4–6,31�.

The organization of this paper is as follows. Appendix A
presents the thermodynamics of polarized surfaces used in
the derivation of the stress tensor needed in this paper. Sec-
tion II A presents the well-known interfacial force balance
equation in terms of the divergence of the membrane stress
tensor Ts. Section II B uses the results of Appendix A to
reformulate the membrane stress tensor Ts using the liquid
crystal membranology approach; in this model Ts is ex-
pressed in terms of the membrane molecular field h �3�,
bending moment tensor M �2�, and capillary vector Q
. Ap-
pendix B shows the variational derivation of the complete
interfacial stress tensor Ts discussed in Sec. II B. Section
III A expresses the membrane stress tensor Ts in terms of the
capillary vector �, which makes the derivation of the shape
equation simple and transparent. Section III B uses classical
membrane elasticity and flexoelectricity to formulate a shape
equation in terms of tension, shear, bending, torsion, and
electric-field effects; validation procedures are implemented.
Appendix C presents a discussion of boundary conditions
relevant to real experiments and derives the integral shape
equation. Section IV provides an illustrative example of the
application of the integral shape equation to field-induced
curvature; validation of the results is implemented by com-
parison with the experimental and theoretical results of Ref.
�4�. Finally, Sec. V gives the conclusions.

II. LIQUID CRYSTAL MEMBRANOLOGY

In this work we consider the isothermal electromechanics
of a thermodynamically closed membrane phase separating
two fluid phases; the membrane is geometrically open and
has an edge C. The model is based on the static limit of the
linear momentum balance equation in terms of the mem-
brane stress tensor Ts, and its functional dependence on the
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bending moment tensor M �see Eq. �16b� below� and mem-
brane molecular field h
 �see Eq. �17� below�.

A. Interfacial stresses and interfacial force balance equation

In this section the basic force balance is introduced
�32,33� and the nature of the stress tensors is defined. The
3�3 stress tensors in the bulk phases are denoted by Tb�1�,
Tb�2� and the 2�3 membrane stress tensor Ts is given by the
sum of a tangential contribution and a bending contribution,

Ts = Ts
 + Ts�, �9a�

Ts
 = Ts
��a�a�, �,� = 1,2, �9b�

Ts� = Ts
��n�a�k , �9c�

where 
 denotes the tangential plane, � denotes the interface
normal direction, and ai are covariant surface base vectors..
The 2�2 tangential stress tensor Ts

�� describes normal-
�stretching� and shear stresses, while Ts

��n� is the 2�1 bend-
ing stress tensor �7�.

The interfacial static force balance equation is the balance
between membrane forces and the bulk stress jump
�7,8,32,33�,

�s · Ts + k · �Tb�2� − Tb�1�� = 0. �10�

Expressing �s .Ts in component form, Eq. �10� becomes
�27,28,32,33�

�Ts ��
�� − Ts

��n�b�
��a� + �Ts

��b�� + Ts ��
��n��k + k · �Tb�2� − Tb�1��

= 0, �11�

where �� denotes covariant derivative. Projecting Eq. �11�
into tangential and normal components yields the interfacial
force balances �27,28,32,33�

�Ts ��
�n + Ts

��b��� + �Tb�2�
nn − Tb�1�

nn � = 0, �12�

�Ts ��
�� − Ts

�nb�
�� + �Tb�2�

n� − Tb�1�
n� � = 0, �,� = 1,2. �13�

Equation �12� is used to derive the shape equation. Equation
�13� is the tangential force balance equation.

B. Membrane molecular field and bending moment

The liquid crystal description of membrane electrome-
chanics is based on the expression of the membrane stress
tensor Ts in terms of the membrane molecular field h
 and
bending moment tensor M. The membrane molecular field h


gives the changes in electroelastic energy due to changes in
surface tilting ��k� and surface bending ��b�. For brevity we
use P=Pflexo.

According to Appendix A �Eq. �A13��, the Helmholtz free

energy per unit mass Â is given by

Â = � +
�

�
+ Âe, �14a�

Âe = Âflexo −
�:EE

8	�
, �14b�

Âflexo = −
P · E

�
, �14c�

where � is the Gibbs function per unit mass, � is the surface

mass density, � is the membrane tension, Âe is the electric

Helmholtz free energy per unit mass, Âflexo is the flexoelec-
tric Helmholtz free energy per unit mass, P is the polariza-
tion, E is the electric field, and � is the dielectric tensor.
Appendix A �Eq. �A3�� shows that at constant electric field

E, the total differential of Â is

dÂ = − �� − P · E −
�:EE

8	
�d�

�2 −
M

�
:d�sk +

Q


�
· dk ,

�15�

where the membrane tension � �Eq. �A5��, bending moment
tensor M �27,28�, the tangential component of the local elec-
trocapillary vector Q
 are

� = − �2�Â

��
+ P · E +

�:EE

8	
, �16a�

M = MT = − ��
�Â

��sk
�

�,k
= ��

�Â

�b
�

�,k
, �16b�

Q
 = ��Is ·
�Â

�k
�

�,�sk
, �16c�

where the superposed T in Eq. �16b� denotes transpose.
Equation �15� shows that (�−P ·E−� :EE /8	) /�2 is the
conjugate to �, M /� is the conjugate of curvature �sk, and
the local electrocapillary vector Q
 /� is the conjugate to k.

Following previous work on anisotropic interfaces �34�,
the tangential membrane molecular field h
 is defined as the
variational derivative of the Helmholtz free energy A,

h
 = − Is ·
�A

�k
= Is · �−

��Â

�k
+ �s ·

��Â

��sk
� �17�

h
 = − �Q
 + Is · ��s · M�� , �18�

where we used definitions �16c� and �16b� for Q
 and M,
respectively. The membrane molecular field h
 is a tangential
vector, and expresses the changes in energy due to surface
tilting and surface bending.

Appendix B shows that the tangential Ts
 and bending
Ts� components of the membrane stress tensor Ts are given

in terms of the free energy �Â−���, bending moment tensor
M, and molecular field h
, as follows:

Ts
 = �Â − ���Is − ��
�Â

��sk
�

�,k
· �sk �19�

=�� − P · E −
�:EE

8	
�Is − M · b , �20�
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Ts� = − Is ·
��Â

�k
k = h
k . �21�

Extracting the trace from the M ·b contribution to Ts
, the
total interfacial stress tensor Ts now reads

�22�

�23�

which is in contrast to piezoelectricity in transversely isotro-
pic materials that exhibit only extensional stresses.

III. ELECTROELASTIC SHAPE EQUATION

A. Generic shape equation

Assuming that the bulk fluid stresses are pure pressures

T1 = − P1I , �24a�

T2 = − P2I , �24b�

the normal force balance Eq. �12� becomes


P � P2 − P1 = T��b�� + T��n�
���. �25�

Using Eq. �21� to express Ts� in terms of the molecular field
h
, the pressure jump 
P becomes


P = Ts
:b + �s · h
 = Ts
:b − �s · �Q
 + ��s · M�� · Is.

�26�

Replacing the tangential stress Ts
 expression �Eq. �19�� into
Eq. �26� gives a compact form of the generic shape equation

�27a�

where the new vector � is the electrocapillary vector for
curved interfaces,

� = �� − P · E −
�:EE

8	
−

1

2
�M:b�	k + �Q
 + ��s · M�� · Is,

�27b�

D is the deviatoric curvature, and q is the deviatoric
curvature tensor, given by Dq=b−HIs �26�. Equation �27a�
is the most compact and revealing form of the shape equa-
tion and shows that interfacial pressure jumps are due to

shear �−DM ·b :q� and the divergence of the capillary vector
(−�s ·�). For spherical interfaces �D=0�, the shape equation
�27a� reduces to


P = − �s · � . �28�

B. Shape equation for the electroelastic Helfrich interface

The Helfrich free energy per unit area �26,29� widely used
to describe the elasticity of membranes and surfactant-laden
interfaces reads

�Âcurvature�H,K� = 2kc�H − Ho�2 + k̄cK , �29�

where kc is bending elastic moduli, Ho is the spontaneous

curvature, and k̄c is the torsion elastic moduli. Under an ex-
ternal electric field E, Eqs. �31� and �A13� show that the total

Helmholtz free energy per unit area �Â is

�Â�H,K� = 2kc�H − Ho�2 + k̄cK − 2cflexo�k · E�H −
�:EE

8	
.

�30�

To derive an expression of the shape equation �27a�
using �30�, we next find expressions for the primary quanti-
ties �i� membrane tension �, �ii� bending moment tensor M,
�iii� electrocapillary vector �, and �iv� the membrane stress
tensor Ts.

Using the surface Euler equation �Eq. �A13��, the mem-
brane tension � is

� = �o + 2kc�H − Ho�2 + k̄cK , �31�

where �o is the tension at zero field �E=0� and zero curva-
ture �H=K=0�. Expressing M in terms of unit tensor Is and
curvature tensor b, we find

M =
��Â

�b
= �C1

2
+ 2C2H�Is − C2b , �32�

where the bending coefficients C1 ,C2� are

C1 = ���Â

�H
�

K,k
= 4kc�H − Ho� − 2cflexo�k · E� , �33a�

C2 = ���Â

�K
�

H,k
= k̄c, �33b�

which shows that C1= f(H ,k ·E) is a function of the
external field E. Using Eqs. �32� and �33�, we find that
M :b /2=C1H /2+C2K, which upon introduction into Eq.
�31� yields the membrane tension in terms of three tension
coefficients ��o+�1�H�+�flexo�H ,k�� and the bending stress
trace M :b /2,

� = �o + �1�H� + �flexo�H,k� +
1

2
M:b , �34�

where �1�H� and �flexo�H ,k� are the curvature-dependent
tension coefficients given by
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�1 = − 2kcHo�H − Ho�; �flexo = cflexoH�k · E� . �35�

Using Eqs. �16c� and �30�, it is found that the local electro-
capillary vector Q
 for this interface is linear in the average
curvature H,

Q
 = �Is ·
��Â

�k
�

�,�sk
= − 2cflexoHE
 , �36�

where E
 =Is ·E. Replacing Eqs. �32�–�36� into �27b� we find
the electrocapillary vector �,

�� = �o + �1 + �flexo − P · E −
�:EE

8	
, �37�

�
 = �s�C1

2
� − �b − 2HIs� · �sC2 + Q
 . �38�

According to Eqs. �37� and �38�, the flexoelectric contribu-
tions appear in tangential and normal components of �,

��flexo = − cflexoH�k · E� , �39�

�
flexo = − h
flexo = − 2cflexoHE
 − cflexo�s�k · E� , �40�

indicating that the energy associated with surface stretching
is affected by E�=kk ·E and for tilting it is affected by
E
 =Is ·E and by gradients of E�=kk ·E.

Using Eqs. �22�, �32�, �37�, and �38�, the total interface
stress tensor Ts is found to be

Ts = ��o + �1 + �flexo − P · E −
�:EE

8	
�Is −

C1

2
Dq

− ���s�C1

2
�	 − ��b − 2HIs� · �sC2� + Q
�k . �41�

According to Eq. �41�, the three flexoelectric stress contribu-
tions are

�42�

where the underbracket defines the stress type. Electric stress
is thus a function of �E
 ,E� ,�s�k ·E�� for a spherical inter-
face D=0, and where there is no shear stress. If E is tangen-
tial, the only stress is of the bending type, Ts=2cflexoHE
k.
Thus interfacial flexoelectricity, in contrast to piezoelectric-
ity �Eq. �2��, affects all stress components.

The shape equation, obtained by introducing Eqs. �32�,
�37�, and �38� into �27a�, gives


P = 2H��o + �1 + �flexo − P · E −
�:EE

8	
� − �s · Q


+ C1�K − H2� − �s
2�C1

2
� + �b − 2HIs�:�s�sC2.

�43�

According to Eq. �36�, the local electrocapillary vector Q
 is
a function of �H ,k�, and hence its divergence is

− �s · �Q
� = − 4cflexoH
2k · E + 2cflexoE
 · �sH . �44�

Using the expression �44� for the bending coefficients
C1 ,C2�, the flexoelectric shape equation �43� reduces to


P = ��o − 2kcHo�H − Ho� − cflexok · EH −
�:EE

8	
��2H�

+ 4kc�H − Ho� − 2cflexok · E��K − H2�

− ��s
2�2kc�H − Ho� − cflexo�k · E��� − 2cflexoE
 · �sH� ,

�45�

where the first bracket is the effective extensional stress, the
second the shear stress, and the last the bending stress con-
tribution to the normal force. Equation �45� is the main result
of this paper. The equation can be used, in conjunction with
experiments, to determine elastic ��o ,kc� and electrical prop-
erties �cflexo�, to design experiments without trial and error,
and to explore new field-induced shaping methodologies.
Equation �45� shows that the presence of membrane flexo-
electricity renormalizes shear and the bending effects by

2kc�H − Ho� → 2kc�H − Ho� − cflexo�k · E� , �46�

and extensional effect by

2kcHo�H − Ho� → 2kcHo�H − Ho� + cflexo�k · E�H . �47�

Extracting the E-related contributions from �45� reveals all
the possible ways available to manipulate membrane shapes,
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Pflexo = �− cflexok · EH −
�:EE

8	
��2H� − 2cflexok · E�

��K − H2� + cflexo�s
2�k · E� + 2cflexoE
 · �sH ,

�48�

which include homogeneous normal fields �k ·E�, gradient
normal fields ��s

2(k ·E)�, and tangential fields �E
�. In the
absence of electric effects �cflexo=0, �=0� and constant kc,
Eq. �45� reduces to the Ou-Yang-Helfrich vesicle shape
equation �26,29,35� for curved interfaces,


P = 2H��o − 2kcHo�H − Ho�� + 4kc�H − Ho��K − H2�

− 2kc�s
2H . �49�

Finding a membrane shape by solving Eq. �45� subjected
to edge conditions is not always feasible under constant cur-
vature. This is due to the fact that under constant curvature
spatial gradients vanish ��sH=0� from the shape equation
�45� and therefore edge information cannot be incorporated
into the solution. Appendix C uses Eq. �45� to derive the
following integral model for constant curvature


P = ��o −
�:EE

8	
�2H − �� · M · ��

GL

V
, �50�

where V is the displaced volume due to the normal displace-
ment, L is the edge length, and G the slope at the edge. The
use of the integral model is discussed below and its validity
established by comparison with previous results �4�.

IV. APPLICATION

Consider an initially flat membrane subjected to an exter-
nal constant field E, under hinged edge conditions. Assuming
that the response to an imposed constant E field creates a
constant-curvature spherical distortion �D=0, H2=K�, and
further assuming Ho=0, Eqs. �10�, �32�, �33a�, and �33b�
yield


P = ��o −
�:EE

8	
�2H − �2kc + k̄c�H − cflexo�k · E��

GL

V
.

�51�

For a spherical cap of base radius a, the edge length is
L=2	a. If the sphere radius is R and the height of the cap is
h, the displaced volume V is

V =
1

6
	h�3a2 + h2� �

1

2
	ha2, �52�

where we assumed that a�h. The slope of the normal dis-
placement at the edge is G=−a /R. Then, using the fact that
for a spherical cap of R�h, a2=2Rh, the geometric factor
becomes

GL

V
= −

4

Rh
= −

8

a2 . �53�

Introducing this result in �51�, we arrive at the expression for
the radius of the membrane

R =
�2�o −

�:EE

4	
�a2 + 8�2kc + k̄c�

�− 
Pa2 + 8cflexo�k · E��
. �54�

If we neglect � :EE /4	 and k̄c, this expression is in
agreement with Eq. �7.37� of Ref. �4�, which was derived
using a direct energy minimization approach and includes
a gravitational term. The decrease of interfacial tension
�o by (� :EE /8	) is known as the Lippmann equation �4�.
The numerator of Eq. �54� is the resistance to deformation
of an initially planar membrane. The denominator is
the driving force for the deformation. The sign of the
denominator determines the sign of R. The initial size of
the circular membrane a appears in the tension term, indicat-
ing an increase in resistance and in the driving pressure,
indicating an increase in area under same pressure drop
decreases the deflection. Order of magnitude analysis of the
different terms is given in Ref. �4�. Usually the bending
and torsion moduli are negligibly in previously used material
andexperimental setups, and the dominant effects are
interfacial tension in the numerator and flexoelectricity
in the denominator of �54�. Other material systems or
geometric parameters may change the role of the elastic
moduli. As an example of the application of �54�, for typical
values quoted in Ref. �4�, E=25 mV/nm, �o=5 mN/m,

a=0.5 mm, cflexo=20�10−18 C, kc=� :EE=k̄c=
P=0, it is
found that R�0.5 m.

V. CONCLUSIONS

This paper presents the formulation of a membrane shape
equation �45� that includes tension, bending, pressure, and
flexoelectric effects. Flexoelectricity in membranes has been
shown to create polarization under curvature �direct effect�
and curvature under externally imposed electric fields �con-
verse effect�. This paper focused on the latter effect. Liquid
crystal membranology was used to efficiently incorporate
electroelastic effects in the stress tensor formulation. Flexo-
electricity is shown to contribute to extensional, shear, and
bending stresses. This is in stark contrast to piezoelectricity
in transversely isotropic materials under external electric
fields, where only extensional stresses arise. The electroelas-
tic shape equation �45� was shown to converge to classical
shape equation �49� for surfactant-laden interfaces, vesicles,
and membranes. The description of constant curvature
spherical membranes under hinged edge conditions, a situa-
tion of interest to real experiments, requires the integration
of surface and edge effects. The integrated model �50� leads
to a shape equation �54� that is consistent with previously
derived equations, and captures the creation of membrane
curvature under an external electric field resisted by tension,
curvature, and torsion.

The covariant form of shape equation �Eq. �45�� is formu-
lated in a transparent form that can guide systematic explo-
ration of other field effects, such as tangential field effects
�E
� and field gradient effects ��s

2�k ·E��, and lead to further
understanding of biological membranes. Lastly, the covariant
approach used here can be extended to dynamical situations,
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nonspherical geometries, and to flexoelectric fibers.

ACKNOWLEDGMENT

This research was supported by the Natural Science and
Engineering Council of Canada.

APPENDIX A: THERMODYNAMICS OF POLARIZED
INTERFACES

The purpose of Appendix A is to present the thermody-
namics of polarized interfaces and membranes relevant to the
derivation of the electroelastic shape equation �48�. Here we
use the approach of Ref. �8� and work with the Helmholtz
free energy. Assuming that the Helmholtz free energy per

unit mass Â and that the Helmholtz free energy per unit area

Ā are given by

Â = Â�1

�
,T,E,k,�sk� , �A1�

Ā = Ā��,T,E,k,�sk� , �A2�

and their differentials read

dÂ = �− � + P · E +
�:EE

8	
�d�

�2 − ŜdT −
D

4	�
· dE −

M

�
:d�sk

+
Q


�
· dk , �A3�

dĀ = − S̄dT + �d� −
D

4	
· dE − M:d�sk + Q
 · dk ,

�A4�

where the membrane tension �, entropy per unit mass Ŝ,
Gibbs free energy per unit mass �, electric displacement D,
bending moment tensor M, local electrocapillary vector Q
,
and polarization P are

� = − �2� �Â

��
�

T,E,�sk,k
+ P · E +

�:EE

8	
, �A5�

� = � �Ā

��
�

�,E,�sk,k
, �A6�

� = � �Ā

��
�

�,E,�sk,k
, �A7�

D = −
1

4	
� �Ā

�E
�

�,T,�sk,k
, �A8�

M = − ��
�Â

��sk
�

�,k,T,E
= ��

�Â

�b
�

�,k,T,E
, �A9�

Q
 = ��Is ·
�Â

�k
�

�,�sk,T,E
, �A10�

4	P = D − � · E . �A11�

Re-writing dĀ in Eq. �A4� in terms of dÂ, we find

dÂ = − ŜdT +
1

�
�� − Â�d� −

D

4	�
· dE −

M

�
:d�sk +

Q


�
· dk .

�A12�

Comparing Eq. �A12� with Eq. �A3�, we find the surface
Euler equation

Â = � +
�

�
−

P · E

�
−

�:EE

8	�
. �A13�

The surface Euler equation is used to define the interfacial
stress tensor in Eq. �B6�, which in part is based on the varia-

tion of Â with density �.
Next we validate the form of the differentials �A3� and

�A4� by using the Maxwell relations involving second
partial derivatives. The Maxwell relation of interest to
flexoelectricity is obtained from Eq. �A4�,

� �2Ā

�b�E
�

�,T,k
= � �2Ā

�E�b
�

�,T,k

T

, �A14�

where the superposed T denotes the transpose and where for
brevity we used the definition −�sk=b. Using �A4� leads to
the equality between changes of electric displacement vector
D with curvature tensor b and changes of moment tensor M
with electric field E,

� �D

�b
�

�,T,k
= 4	� �M

�E
�

�,T,k

T

. �A15�

Using Eqs. �A11� and �5�, the displacement is D=4	P
+� ·E=cflexo4	�Is :b�k+� ·E, and the left-hand side of Eq.
�A15� yields a third-order tensor symmetric in its first two
indices,

� �D

�b
�

�,T,k
= cflexo4	Isk . �A16�

Using Eq. �34�, the right-hand side of �A15� gives

4	� �M

�E
�

�,T,k

T

= 4	cflexoIsk . �A17�

Comparing Eqs. �A16� and �A17� shows that Eq. �A14� is
satisfied.

The Maxwell relation of interest to piezoelectricity is ob-
tained from Eq. �A3�,

� �2Â

���E
�

b,T,k
= � �2Â

�E��
�

b,T,k
. �A18�

Using Eqs. �A3� and �A18� leads to the equality
between changes of electric displacement vector per unit
mass D /4	� with density � and changes of effective tension
�−�+P ·E+� :EE /8	� with electric field E,
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− � �

��

D

4	�
�

b,T,k
=

1

�2� �

�E
�− � + P · E +

�:EE

8	
�	

b,T,k
,

�A19�

which upon direct differentiation leads to

� �2Â

���E
�

b,T,k
=

1

�2

D

4	
, �A20�

� �2Â

�E��
�

b,T,k
=

1

�2

�

�E
�P · E +

�:EE

8	
� =

1

�2

D

4	
,

�A21�

and hence the piezoelectric Maxwell relation �A18� is
upheld.

APPENDIX B: MEMBRANE STRESS TENSOR

The purpose of Appendix B is to present the derivation of
the membrane stress tensor Ts, shown in equation �22�. It
proves convenient to introduce the following decomposition:

Ts = T
iso + T
b + T�b + T�k, �B1�

T
iso = �� − P · E −
�:EE

8	
�Is, �B2�

T
b = − M · b , �B3�

T�b = − ��s · M�k , �B4�

T�k = − Q
k , �B5�

where “iso” denotes isotropic, 
 denotes tangential and �
normal components, and the subscripts �k ,b� denote whether
surface tilting or bending is involved, respectively.

At constant E and T, the variation of the total Helmholtz
free energy A is

��
S

�ÂdS = �
S

��ÂdS = �
S

�� �Â

��
· �� + �Is ·

�Â

�k
� · �k

+ �Is ·
�Â

��sk
· Is�:��sk�dS

= �
S

�� �Â

��
�� + Q
 · �k + M:�b�dS, �B6�

where ��� ,�k ,�b� are variations in areal density, unit nor-
mal, and curvature tensor, respectively. To proceed further
we need to find ��� ,�k ,�b� in terms of the interfacial dis-
placement vector �R that creates the energy change. In the
following derivation we use the fact that a small displace-
ment �R can be expressed in terms of the surface velocity
�R=v�t, where v is the surface velocity and t is time, as
done in Ref. �26�. Expressing the displacement �R in terms
of tangential u
 and normal �k components, we find

�R = u
 + �k, u
 = v
�t, �k = v��t , �B7�

where �v
 ,v�� are the tangential and normal velocities.
�i� Variation in areal density ����: Using the interfacial

mass balance equation ��� /�t+v ·�s�=−��s ·v�, we find

�� = ��
 + ���, �B8�

��
 = − �Is:�su
 , �B9�

��� = − ��s · ��k� . �B10�

�ii� Variation in unit normal ��k�: The velocity of the
surface unit normal is according to transport law �32�,

�k

�t
= − ��sv� · k , �B11�

which yields the variations

�k
 = − k · ��su
�T, �B12�

�k� = − �s� . �B13�

�iii� Variation in curvature tensor ��b�: According to
transport law, the time derivative of the curvature tensor b is
�32�

�b

�t
= − ��sv� · b + �s���sv� · k�� · Is + b ·

�Is

�t
+

�Is

�t
· b ,

�B14�

where the last two terms are changes due to spatial orienta-
tion of b given by �32�,

b ·
�Is

�t
+

�Is

�t
· b = kb · ��sv� · k + b · ��sv� · kk .

�B15�

The variations �b due to the displacements, then, are

�b
 = − ��su
� · b , �B16�

�b� = �s���s�k� · k�� · Is = �s�s� . �B17�

To derive the stress tensor due to dilation,

T
iso = �� − P · E −
�:EE

8	
�Is,

we use a density variation due to tangential displacements,

�
S

�
�Â

��
· ��
dS = �

S
Tiso
:��su
�TdS . �B18�

Using expression �B9� for surface density changes ��
 into
the integrand of Eq. �B18� gives

�
�Â

��
��
 = �− �2�Â

��
�Is:��su
�T. �B19�

Replacing Eq. �B19� into �B18� leads to

Tiso
 = �− �2�Â

��
�Is = �� − P · E −

�:EE

8	
�Is. �B20�

ALEJANDRO D. REY PHYSICAL REVIEW E 74, 011710 �2006�

011710-8



To find the tangential stress tensor due to bending T
b, we
use a variation �b
 due to tangential displacements,

�
S

�
�Âflexion

�b
:�b
dS = �

S
T
b:��su
�TdS . �B21�

Using expression �B16� for �b
 into the integrand in Eq.
�B21� gives

�
�Â

�b
:�b
 = �− �

�Â

�b
· b�:��su
�T. �B22�

Replacing Eq. �B22� into �B21� leads to

T
b = − �
�Â

�b
· b = − M · b �B23�

To find the bending stress due to bending T�b, we use a
variation due to normal displacements,

�
S

�
�Âflexion

�b
:�b�dS = �

S
�T�b · k� · ��s��dS . �B24�

Using expression �B17� for �b� into the integrand in Eq.
�B24� gives

�
�Â

�b
:�b� = ��

�Â

�b
�:��s�s�� = �s · ���

�Â

�b
� · ��s��	

− ��s · �
�Â

�b
� · ��s�� . �B25�

Replacing the last term in Eq. �B25� into �B24� leads to

Tsurf� = − ��s · �
�Â

�b
�k = − ��s · M�k . �B26�

The term �s · ����Â /�b� · ��s��� in Eq. �B25� is integrated out
into an edge term, which is discussed in Ref. �26�.

To find the interface stress tensor T�k, we use a variation
of the energy due to changes in the outward unit normal �k
due to normal displacements ��s�k� and find

�
S

�Is ·
�Â

�k
· �k�dS = �

S
T�k:��s�k�T dS

= �
S

�T�k · k� · ��s��dS . �B27�

Replacing Eq. �B13� into the first integrand in Eq. �B27�
gives

Is · �
�Â

�k
· �k� = − Is · �

�Â

�k
· �s� . �B28�

Replacing �B28� into the first integrand of �B27� yields upon
comparison with the last integrand in �B27� the expression

T�k = − Is · �
�Â

�k
k = − Q
k . �B29�

Summing the four stress tensors �Eqs. �B20�, �B23�, �B26�,
and �B29��, we find, after making the expression in Eq.
�B23� traceless, the expression for the membrane stress Ts
given in Eq. �22�.

APPENDIX C: INTEGRAL SHAPE EQUATION

Here we derive Eq. �50�. To solve practical problems in
membrane flexoelectricity, Eq. �45� must be satisfied sub-
jected to edge conditions. According to classical membrane
and plate mechanics �26,36�, the edge conditions are im-
posed according to the edge displacements

�R = u
 + �k , �C1�

where u
 is the tangential displacement vector and �k is the
normal displacement vector. The common edge conditions
are �i� free edge conditions u
�0, ��0, and �s��0, �ii�
clamped edge conditions u
 =0, �=0, and �s�=0, and �iii�
hinged edge conditions u
 =0, �=0, and �s��0. A full dis-
cussion of all edge conditions is beyond the scope of this
paper; here we briefly discuss hinged edge conditions since
they are relevant to important flexoelectric measurements
�4�; a complete discussion is given in Ref. �26�. According to
�B25�, the normal force due to ��s�� is

�
S

�
�Â

�b
:�b�dS = �

S
M:��s�s��dS . �C2�

Since the total normal force balance is given in terms
of �, the surface gradients in the second integrand in
Eq. �55� must be shifted to M. Using the identity
M : ��s�s��=�s · �M · ��s���−�s · ���s ·M���+���s�s :M� and
the surface divergence theorem leads to �26�,

�
S

M:��s�s��dS = �
S

���s�s:M�dS − �
C

� · ��s · M� �d�

+ �
C

� · M · ��s��d� , �C3�

where the term ��s�s :M� in the first integrand is the nega-
tive of the normal force due to bending stresses that appears
in Eq. �45�, and � is normal to the edge and tangential to the
membrane surface. For a hinged edge of a flexoelectric Hel-
frich interface, we find

�
S

M:��s�s��dS = �
S

��s
2�2kc�H − Ho� − cflexo�k · E��dS

+ �
C

� · M · ��s��d� , �C4�

and hence in the absence of external edge couples we must
impose �26�

� · M · � = 0 �C5�

at the hinged edges �36�.
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The canonical approach to membrane shape determination
under hinged conditions involves solving Eq. �45� subjected
to �58�,

� · M · � = − 2kcHo − cflexo�k · E� + 2kcH + k̄c�H − D� = 0,

�C6�

where we note that the torsion modulus k̄c appears in the

boundary condition because k̄cK �Eq. �32�� is a nilpotent en-
ergy not discardable in open surfaces under hinged edge con-
ditions. The role of torsion on edge conditions was previ-
ously identified in Ref. �26�. In the literature of closed

membranes, the torsion term k̄cK is usually discarded at the
outset.

Finding a membrane shape by solving Eq. �45� subjected
to edge conditions is not always feasible under constant cur-
vature. This is due to the fact that under constant curvature
spatial gradients vanish ��sH=0� from the shape equation
�45� and therefore edge information, such as Eq. �58�, cannot
be incorporated into the solution. For spherical interfaces,
such as spherical caps of crucial importance in flexoelectric
membranes under a constant E and Ho=0, the governing
equation becomes algebraic in H, and the surface and edge
model equations �45� and �58� lead to a redundancy since we
have the following two equations for just one unknown �H�,


P − �2�o −
�:EE

4	
�H = 0,

�C7�
− cflexo�k · E� + �2kc + k̄c�H = 0.

To remove the unavoidable redundancy, one can use an inte-
gral balance approach. The integral normal force model is
obtained by multiplying the electroelastic shape equation

�45� �or Eq. �27a� for brevity� by �, integrating over the area
S and adding the result to the edge term �Eq. �58��,

�C8�
For a spherical interface �D=0�, the integral shape equation
�63� reduces to

�
S
�
P − ��o −

�:EE

8	
��2H�	�d S + �

C

� · M · ��s��d� = 0.

�C9�

Under constant curvature the integrands are constant and the
integrals yield

�
S
�
P − ��o −

�:EE

8	
��2H�	�d S

= �
P − ��o −
�:EE

8	
��2H�	V , �C10a�

�
C

� · M · ��s��d� = �� · M · ��GL , �C10b�

where V is the displaced volume V due to the normal dis-
placement, L is the edge length, and G the slope at the edge.
The integral shape equation for spherical membranes then is
given by Eq. �50�:


P = ��o −
�:EE

8	
�2H − �� · M · ��

GL

V
,

where the edge contribution � ·M ·� is found by using Eqs.
�32� and �33�.
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